钢铁行业库存量化研究框架专题二:以库存锚定钢价,基于基本面与经济逻辑,构建短期钢价预测体系
识别风险,发现价值请务必阅读末页的免责声明 1 / 28 专题研究|钢铁 2018 年 07 月 04 日 证券研究报告 本报告联系人:陈潇 020-8757-1273 gzchenxiao@gf.com.cn Tabl e_Title库存量化研究框架专题二:以库存锚定钢价 基于基本面与经济逻辑,构建短期钢价预测体系 Table_AuthorHorizont al分析师: 李 莎 S0260513080002 020-87574792 lisha@gf.com.cn Table_Summary基于我们在《库存量化研究框架专题一:从解构微观库存说起——从短期波动到经济周期,看好库存短期波动修复与长期钢铁行业投资机会》报告中所分解出来的库存噪声项,本篇尝试构建一个短期的钢铁价格预测体系。从预测的意义上来看,未来经济变量的取值是惯性与新息(Innovation)的叠加,即未来经济变量既受到当前正在发生的经济走势的推动,也受到未来可能发生的经济变动的冲击。其中,前者提供了经济预测的确定性成分,我们可以通过适当使用计量模型来对经济趋势进行外推,以解释与预测未来的价格变动。在这一维度上,库存噪声项是一个较为可靠的变量,因为其所具有的惯性与均值回复性特征使得经济趋势的外推更为可控。在短期展望期内,供需面不易产生具有强冲击力的新息,以库存为中心进行延伸与外推,在一定程度上可提供较为可靠的短期价格预测。 一、库存-钢价关系的再审视:基于理论推导,我们设计了一个以库存为中心的指标体系 库存-钢价关系的第一层逻辑来自于两者均是对当下供需关系的一个表征,即库存与钢价同时表达为同期供需缺口的函数。从数据表现与实证检验去观测,库存噪声项与钢价涨跌幅大致存在该逻辑下的同步镜像关系,但这并不能完全地解释钢价波动。第一,库存噪声项与钢价涨跌幅存在滞前或滞后的相关关系;第二,在部分时点上,钢价显然纳入了超越以库存表征的供需格局的因素。 就第一个问题而言,其原因在于供需缺口存在内生性,即供需本身必然是价格的函数,且受到供给端生产商基于库存的生产调节与经销商基于库存的储货调节影响,这导致库存与钢价存在异期的正相关性。我们基于多元线性回归可以验证这种异期相关性,从而将异阶的库存和钢价引入指标体系。 就第二个问题而言,其原因在于短期价格不仅表达为供需的函数,价格可能会由于其他因素的推动而偏离供需所决定的中枢:一方面,钢贸商的投机套利行为使得市场价格预期成为短期内市场价格波动的自变量,这部分可以使用期货指数涨跌幅作为表征;另一方面,价格存在自相关性,滞后的价格可以通过名义价格粘性与库存-钢价反馈机制形成短期正向与长期负向的自相关性,因此,我们引入异阶的钢价涨跌幅作为预测变量。此外,以库存直接外推来预测未来的供需缺口没有考虑新生的供需,我们基于景气脉冲的思路,使用处于脉冲传导过程偏前位置的水泥价格来预测钢价涨跌幅,并基于实证检验取得了验证。 二、模型设定:考虑到变量内生性与价格残差的均值回归特征,我们分别基于 VAR 与 ARIMAX 展开模型构建 直接使用线性回归拟合与预测钢价涨跌幅的缺陷在于两个方面:第一,它没有考虑系统内生性;第二,它无法决定变量的滞后阶数,一个能够改进上述缺陷的模型是 VAR 模型,它本身是一个内生系统,且包含了动态择阶的机制。基于估计出的 VAR 模型,我们对前文通过理论推导得到的变量间关系进行了验证,并为阶数 k 的确定提供了经验依据。相较线性回归,VAR 模型取得了更出色的拟合效果,但 VAR 过于强调经济变量的惯性,这使得当系统接受到强脉冲时,VAR 模型容易给出过度反应。 VAR 模型的缺陷在于没有考虑价格的均值回归性,一个改进的方案是 ARIMAX 模型,它引入了平滑波动与补偿价格超调的机制。基于估计的 ARIMAX 模型来看,其拟合程度较 VAR 模型有所提高,且不易于出现对于前值的过度依赖,但由于引入了滞后 MA 项的负相关性,在某些节点上我们观察到 ARIMAX 模型对自我趋势的过度修复。 三、模型应用:VAR 模型是较优的模型设定,在市场平稳与市场震荡时分别适用 VAR 模型和 ARIMAX 模型 我们基于 VAR 模型对库存进行外推,并基于库存与历史变量对钢价涨跌幅进行预测。由于模型返回的结果仅仅代表对下周钢价涨跌幅的分布的预测,因此,我们引入上涨概率和置信区间帮助我们更直观地理解结果。 我们基于点估计和区间估计的维度,使用包含准确率与对数似然函数等一系列指标去评估,结果显示,VAR 模型是较优的模型设定,且从分类器的角度来讲,VAR 模型与 ARIMAX 模型均具备超越无模型设定的 Logistic 分类器的表现,表明本文基于经济逻辑推导的模型设定具有预测意义上的额外价值。而从 VAR 模型和 ARIMAX 模型的特征上去观测,VAR 模型更加强调经济惯性,因此当市场整体表现平稳时,VAR 模型具有较佳的可信度,而当市场出现超预期事件(即频繁的新息)时,VAR 模型可能并不具备良好的预测能力;ARIMAX 则强调对过度偏离的均值修复,因此更加适合于在市场震荡往复时使用。 四、风险提示:模型基于历史信息外推,因此对于超预期事件不具备预测能力;模型主要为线性模型,对于非线性变量关系解释能力较弱;预测时对于残差是基于正态分布假设的,当误差服从其他分布时预测能力较弱;模型假定变量间关系在历史时间区间内是一致的,但不排除不同时间区间的变量间关系存在差异的情况。 Table_Report相关研究:【广发钢铁 李莎】矿山、钢厂、钢贸商动态跟踪(20180312-20180316)-外矿发货量大幅下降,高炉检修率小幅上升,亏损面与上次统计持平2018-03-18【广发钢铁 李莎】周报(20180312-20180316)-社会库存周环比小降,下游需求逐渐释放2018-03-18【广发钢铁 李莎】炼钢工艺发展路径专题之二:短流程发展箭在弦上?--政策、环保带来机遇,人才、技术仍有挑2018-03-17 识别风险,发现价值 请务必阅读末页的免责声明 2 / 28 专题研究|钢铁 目录索引 前言:经济惯性、新息与短期未来的可预测性 ................................................ 4 一、库存-钢价关系的再审视:基于理论推导,我们设计了一个以库存为中心的指标体系 ......................................................................................................... 5 (一)库存-钢价的同步关系:由于库存噪声项和钢价涨跌幅均反映同期供需关系,因此两者存在可验证的同步镜像关系 ............................................................................. 5 (二)库存-钢价的异期相关:由于供需缺口的内生性,库存噪声项与钢铁涨跌幅呈现异期相关 ..........................
[广发证券]:钢铁行业库存量化研究框架专题二:以库存锚定钢价,基于基本面与经济逻辑,构建短期钢价预测体系,点击即可下载。报告格式为PDF,大小0.77M,页数28页,欢迎下载。
