欧洲央行-财务回报、情绪和市场波动。动态评估(英)

Working Paper Series Financial returns, sentiment and market volatility. A dynamic assessment. Stefano Borgioli, Giampiero M. Gallo, Chiara Ongari Disclaimer: This paper should not be reported as representing the views of the European Central Bank (ECB). The views expressed are those of the authors and do not necessarily reflect those of the ECB. No 2999 AbstractIn 1936, John Maynard Keynes proposed that emotions and instincts are pivotal indecision-making, particularly for investors. Both positive and negative moods can influencejudgments and decisions, extending to economic and financial choices. Intuitions, emotionalstates, and biases significantly shape how people think and act. Measuring mood or sen-timent is challenging, but surveys and data collection methods, such as confidence indicesand consensus forecasts, offer some solutions. Recently, the availability of web data, includ-ing search engine queries and social media activity, has provided high-frequency sentimentmeasures. For example, the Italian National Statistical Institute’s Social Mood on EconomyIndex (SMEI) uses Twitter data to assess economic sentiment in Italy. The relationship be-tween SMEI and financial market activity, specifically the FTSE MIB index and its volatility,is examined using a trivariate Vector Autoregressive model, taking into account the impactof the COVID-19 pandemic.Keywords: VAR, Granger Causality, sentiment analysis, financial market, forecastingJEL Codes: C1, C32, C53, G4ECB Working Paper Series No 299911Non-technical summaryBoth positive and negative emotions can impact judgments and economic decisions. Althoughmeasuring mood or sentiment is challenging, tools like surveys and confidence indices help. Infact online data, such as search engine queries and social media activity, provide more frequentsentiment measurements.For instance, the Italian National Statistical Institute created theSocial Mood on Economy Index (SMEI) using Twitter data to gauge economic sentiment inItaly. This study examines the relationship between the SMEI and financial market activity,particularly the FTSE MIB index, using a model that considers also possible effects of theCOVID-19 pandemic.Two main data sources are used: the SMEI, which measures daily Italian economic sentimentthrough tweets, and the FTSE MIB, which represents the performance of 40 major Italian stocksand includes volatility data. The analysis uses Vector Auto-regressive Models (VAR) to studythe relationships between the SMEI, FTSE MIB returns, and volatility from February 10, 2016,to March 8, 2020. Granger causality tests are then conducted to determine if past values of onevariable can predict current values of another, revealing potential bidirectional influences.“Even apart from the instability due to speculation, there is the instability due to the charac-teristic of human nature that a large proportion of our positive activities depend on spontaneousoptimism rather than on a mathematical expectation, whethe

立即下载
综合
2024-11-18
28页
2.64M
收藏
分享

欧洲央行-财务回报、情绪和市场波动。动态评估(英),点击即可下载。报告格式为PDF,大小2.64M,页数28页,欢迎下载。

本报告共28页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共28页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
表 4-1 绿色刺激措施和“十四五”规划的重点(累计 44.6 万亿元投资)
综合
2024-11-18
来源:碳中和实现路径与全球气候治理的中国贡献
查看原文
表 3-1 2010—2020 年全球森林面积年均净增加前十名的国家
综合
2024-11-18
来源:碳中和实现路径与全球气候治理的中国贡献
查看原文
图 3-7 中国近 30 年来森林蓄积量及森林覆盖率的变化情况
综合
2024-11-18
来源:碳中和实现路径与全球气候治理的中国贡献
查看原文
图 3-6 2013—2022 年中国新能源汽车产销量的变化情况
综合
2024-11-18
来源:碳中和实现路径与全球气候治理的中国贡献
查看原文
图 3-5 2013—2022 年中国三大产业增加值占国内生产总值比重的变化情况
综合
2024-11-18
来源:碳中和实现路径与全球气候治理的中国贡献
查看原文
图 3-4 2021 年中国、美国、欧盟可再生能源装机容量和发电量情况
综合
2024-11-18
来源:碳中和实现路径与全球气候治理的中国贡献
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起