汽车与零部件行业AI%2b汽车智能化系列之三:充分重视OEM自研智驾芯片的长期意义
AI+汽车智能化系列之三——充分重视OEM自研智驾芯片的长期意义证券研究报告· 行业研究· 汽车与零部件汽车行业证券分析师:黄细里执业编号:S0600520010001 联系邮箱:huanxl@dwzq.com.cn联系电话:021-60199790汽车行业证券分析师:杨惠冰执业编号: S0600523070004联系邮箱:yanghb@ dwzq.com.cn2024年4月22日核心结论总结核心结论总结2◼ 当我们在谈自研智驾芯片时,我们究竟在谈什么?【设计芯片IP核+开发适配底软/工具链】➢芯片按类可分为计算、存储、信号转换以及片上集成SoC四大类,AI芯片是指在SoC基础上针对人工智能算法做特殊加速处理的芯片。智驾领域AI芯片主要用于云端/边缘端两种场景:1)用于智驾边缘端应用的AI芯片一般涵盖AI计算单元NPU、CPU\GPU\ISP\IO接口等必要组成部分,更强调各IP核之间的综合协调能力;2)用于云端训练应用的AI芯片则更加强调NPU\GPU的计算能力,对于功耗、各部分间协调等要求较低。➢OEM及三方供应商自研智驾芯片多指:自身设计SoC系统中NPU/ISP等核心IP核,外采EDA软件形成逻辑电路,并由其他厂商完成制造以及封装环节;同时为更好调用芯片算子算力,玩家需适配性开发底软(计算架构)以及SDK工具链,便于编辑落地上层应用。➢为进一步强化智驾“数据闭环”对于软硬件迭代效率的意义,少部分玩家或将自研云端超算芯片。◼OEM自研设计AI智驾芯片必要性以及可行性如何?【边缘端芯片必要性及可行性强】➢必要性:自研边缘端芯片有足够性价比,云端芯片短期必要性较低。智能驾驶产品力的竞争短期看产品体验,中期看迭代效率,长期看降本能力;边缘端芯片自研有效影响中期软件算法相对成熟后的迭代效率(软件能否充分发挥芯片算力),并直接决定长期智驾全系统降本能力,因此强势OEM当前投资芯片自研在未来3~5年内有足够超额回报,有望形成正循环。云端芯片短期性能要求单一,仅针对AI算力,中长期影响软硬件提升速率,但前期投入较大,当前性价比较低。➢可行性:OEM玩家自研边缘段智驾芯片可行性较强。参照地平线、黑芝麻智能发展历程,从团队规模、资金投入以及研发耗时三重角度分析,千人研发规模;30~50亿研发投入;2~3年耗时可支持智驾芯片全自研以及配套解决方案落地;特斯拉2016年启动智驾芯片项目,2019年正式搭载上车,国内强势OEM自研芯片以及配套底软具备相当可行性。核心结论总结核心结论总结3◼ 第三方Tier玩家自研智驾芯片以及底软,打法及成效如何?【高举高打最强音&自下而上差异化】➢第一类:英伟达/华为,云端&边缘端软硬件全覆盖。➢1)英伟达:高举高打,打造硬件算力&软件生态最强音。公司依托全球绝对领先GPU芯片&CUDA异构计算架构,软硬件配合构筑高壁垒,汽车为其下游重要终端应用场景。以Hopper架构赋能的DGX高性能芯片布局超算中心,自研DPU芯片支持云端大规模数据传输,配合基于CUDA 的高性能 算子库和 SDK 工具包,支持 数据训练 + 图形渲染+ 仿真模拟等,并 通 过GPU+Grace CPU组合形成SoC芯片,更好裁剪落地云端算法解决方案。➢2)华为:全面对标英伟达,赋能车企培育生态。硬件端,华为以昇腾310/910为基础分别聚焦推理/训练环节,310系列配合华为自研激光雷达等传感器形成完整车身解决方案,910 NPU配合鲲鹏系列CPU打造Atlas云端服务器,提供最大20PFLOPS的解决方案;软件端,华为对标英伟达CUDA开发CANN计算架构,盘古大模型赋能,MindStudio工具链支持完善第三方应用。软硬件成套配合赋能国内弱势OEM,更好培育自身智驾生态。➢第二类:高通/Mobileye/地平线,聚焦边缘端软硬件,自下而上差异化布局。➢1)高通:边缘端智驾芯片&开发工具链全自研,发挥基盘业务优势自研全芯片IP核,舱驾一体差异化向上突破,国内市场联合创达/毫末/大疆等Tier1迅速入局,补足生态短板;➢2)Mobileye:依托L2智驾开发积累,由封闭黑盒逐步开放,SDK套件开发完善,聚焦低成本高效能视觉方案,国内联合经纬恒润加速发展;➢3)地平线:芯片架构持续优化,征程系列产品以自研BPU AI计算核心,OpenExplorer算法工具链为支撑,以相对“低姿态”赋能国内OEM股东,协同进步。核心结论总结核心结论总结4◼ 特斯拉自研智驾云边芯片,国内OEM举旗跟进,布局智驾硬件。➢特斯拉全栈自研FSD智驾芯片,底层算法更好适配调用ASIC芯片算力,实现双芯144TOPS算力即可对标英伟达双芯508TOPS算力的智驾功能,同时根据自身软件能力迭代持续优化硬件架构,保障行业领先。另外自研D1芯片支撑云端Dojo超算中心,强化AI计算+传输带宽,AI算力全球领先;并自研训练软件栈,支持通用性计算语言的同时实现对神经网络模型的自动调优和并行化。➢国内OEM举旗跟进自研。第一类:以头部新势力为代表,智驾边缘端芯片全栈自研,蔚来对标英伟达Orin智驾芯片已发布;小鹏/理想积极布局,预计2025~2026年亮相;第二类:主流车企以战投合作形式展开,吉利亿咖通以及多OEM战投地平线,进行产业链布局。◼ 投资建议:汽车AI智能化转型大势所趋,硬件为基石,看好布局智驾硬件的OEM长期竞争力。➢全行业加速智能化转型,产业趋势明确。下游OEM玩家+中游Tier供应商以及上游原材料厂家均加大对汽车智能化投入,大势所趋;智驾核心环节【软件+硬件+数据】均围绕下游OEM展开,数据催化算法提效进而驱动硬件迭代。因此,以AI芯片为核心的智驾硬件是OEM中长期核心竞争力的重要构成,参考手机行业,核心硬件是玩家【成本控制能力+品牌护城河】的终局竞争要素。➢国内OEM以软件为先,硬件其次,加速进化。头部新势力玩家紧随特斯拉引领本轮智驾技术变革,全自研智驾芯片有望于2025~2026年流片量产,构筑品牌核心竞争力以及产品重要卖点。➢看好智驾头部车企以及智能化增量零部件:1)华为系玩家【长安汽车+赛力斯+江淮汽车】,关注【北汽蓝谷】;2)头部新势力【小鹏汽车+理想汽车】;3)加速转型【吉利汽车+上汽集团+长城汽车+广汽集团】;4)智能化核心增量零部件:域控制器(德赛西威+经纬恒润+华阳集团+均胜电子等)+线控底盘(伯特利+耐世特+拓普集团等)。◼风险提示:智能驾驶相关技术迭代/产业政策出台低于预期;华为/小鹏等车企新车销量低于预期。目录一、如何看待OEM自研智驾芯片?二、第三方玩家自研智驾芯片成效如何?三、下游OEM玩家如何做?四、投资建议与风险提示一、如何看待OEM自研智驾芯片?芯片分类:四类主流芯片覆盖市场不同应用场景芯片分类:四类主流芯片覆盖市场不同应用场景7◼ 当前市场上流通的主流芯片包括四大类:1)处理器芯片,包括CPU、GPU、DSP、和MCU,负责系统的运算和控制核心,以及信息处理和程序运行的最终执行单元。2)存储器芯片:包括静态(SRAM)以及动态(DRAM)随机存取存储器等,用于数据的存储。3)模拟-数字转换器 (ADC) 和 数字-模拟转换器 (DAC):这两种芯片分别用于模拟信号和数字信号的互相转换,广泛
[东吴证券]:汽车与零部件行业AI%2b汽车智能化系列之三:充分重视OEM自研智驾芯片的长期意义,点击即可下载。报告格式为PDF,大小5.02M,页数75页,欢迎下载。
