美联储-用自举部分边际效应和Shapley值解释机器学习(英)

Finance and Economics Discussion SeriesFederal Reserve Board, Washington, D.C.ISSN 1936-2854 (Print)ISSN 2767-3898 (Online)Explaining Machine Learning by Bootstrapping Partial MarginalEffects and Shapley ValuesThomas R. Cook, Zach D. Modig, Nathan M. Palmer2024-075Please cite this paper as:Cook, Thomas R., Zach D. Modig, and Nathan M. Palmer (2024). “Explaining MachineLearning by Bootstrapping Partial Marginal Effects and Shapley Values,” Finance and Eco-nomics Discussion Series 2024-075. Washington: Board of Governors of the Federal ReserveSystem, https://doi.org/10.17016/FEDS.2024.075.NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminarymaterials circulated to stimulate discussion and critical comment. The analysis and conclusions set forthare those of the authors and do not indicate concurrence by other members of the research staff or theBoard of Governors. References in publications to the Finance and Economics Discussion Series (other thanacknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.Explaining Machine Learning by Bootstrapping PartialMarginal Effects and Shapley ValuesThomas R. Cook∗†Zach Modig†‡Nathan M. Palmer†‡August 6, 2024AbstractMachine learning and artificial intelligence are often described as “black boxes.”Traditional linear regression is interpreted through its marginal relationships as cap-tured by regression coefficients. We show that the same marginal relationship can bedescribed rigorously for any machine learning model by calculating the slope of the par-tial dependence functions, which we call the partial marginal effect (PME). We provethat the PME of OLS is analytically equivalent to the OLS regression coefficient. Boot-strapping provides standard errors and confidence intervals around the point estimatesof the PMEs.We apply the PME to a hedonic house pricing example and demon-strate that the PMEs of neural networks, support vector machines, random forests, andgradient boosting models reveal the non-linear relationships discovered by the machinelearning models and allow direct comparison between those models and a traditionallinear regression. Finally we extend PME to a Shapley value decomposition and explorehow it can be used to further explain model outputs.JEL Classifications: C14, C18, C15, C45, C521IntroductionMachine learning (ML) and artificial intelligence (AI) methods are often regarded as a blackbox: they may capture useful interactions and nonlinearities in data, but the shape and∗Federal Reserve Bank of Kansas CityEmail: thomas.cook@kc.frb.org†The views expressed in this article are those of the authors and do not necessarily reflect the views ofthe Federal Reserve Board, the Federal Reserve Bank of Kansas City or the Federal Reserve System.‡Federal Reserve Board of GovernorsEmail: nathan.m.palmer@frb.gov1nature of the relationships are difficult to ascertain. There is a growing appetite to use MLmodels in finance

立即下载
综合
2024-09-30
40页
1.22M
收藏
分享

美联储-用自举部分边际效应和Shapley值解释机器学习(英),点击即可下载。报告格式为PDF,大小1.22M,页数40页,欢迎下载。

本报告共40页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共40页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
2006、2008 和 2012 年中国 60 岁及以上人口住院费用报销比例
综合
2024-09-30
来源:WHO:中国老龄化与健康国家评估报告
查看原文
2006 至 2012 年中国医疗费用支出来源
综合
2024-09-30
来源:WHO:中国老龄化与健康国家评估报告
查看原文
2012 年中国城乡地区卫生保健工作人员分布情况 
综合
2024-09-30
来源:WHO:中国老龄化与健康国家评估报告
查看原文
2008 年和 2012 年中国专业卫生保健机构数量
综合
2024-09-30
来源:WHO:中国老龄化与健康国家评估报告
查看原文
2013 年空气质量监测结果
综合
2024-09-30
来源:WHO:中国老龄化与健康国家评估报告
查看原文
2010 年城市和农村地区老年人慢性病危险因素流行率
综合
2024-09-30
来源:WHO:中国老龄化与健康国家评估报告
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起