算力行业深度报告(系列一):算力供需双向走强,AI催化Infra建设新征程
证券研究报告2024年9月6日行业:通信增持 (维持)算力供需双向走强,AI催化Infra建设新征程——算力行业深度报告(系列一) 分析师:刘京昭 SAC编号:S08705230400052摘要u 算力指实现AI系统所需要的硬件计算能力,是AI的“底座”,在AI时代下对GDP、数字化转型、产业数字化三方面均具有显著的拉动作用。u 算力产业链覆盖范围广阔,包括GPU芯片、服务器、IDC厂商、AIGC应用服务提供商等,具有庞大的挖掘价值。通过产业链的梳理和分析,各个体系架构有着不同的投资逻辑和重点:Ø GPU芯片:传统摩尔定律逐步失效,算力催化新摩尔定律呈现Ø 服务器:需求侧市场持续繁荣,量价齐升为主要投资逻辑Ø IDC厂商:定制化服务需求性增强与第三方厂商优势明确Ø 算力租赁:兼备灵活与部署优势,或伴随边缘计算共成长Ø 算力调度:算力发展的下半场u 投资建议:我们结合产业链相关层次、发展潜力、竞争格局等方面,建议关注:工业富联、浪潮信息、中科曙光、云赛智联、大名城、恒为科技等。风险提示:国内研发技术薄弱;中美贸易变动加剧;AIGC商业落地模式尚未明确。SECTION1 算力急缺性:AI需求加速膨胀,算力迎来发展新篇章1.1 算力、数据、算法是AI时代演进的三大引擎1.2 算力是经济发展高速列车上的“关键引擎”2 产业链分析:基础设施建设提速,下游商业模式各有所长2.1 上游:摩尔定律面临严峻挑战,GPU有望铸就算力“摩尔定律出现”2.2 中游:需求繁荣是服务器市场增量的主要来源2.3 下游:需求供给双侧显著成长,数据中心发展大有可为3 公司分析:工业富联、浪潮信息、中科曙光、云赛智联、大名城、恒为科技等4 风险提示目录Content41.1 算力、数据、算法是AI时代演进的三大引擎u AI发展的核心要素包括:数据、算力、算法,三者呈现三位一体,相辅相成的局面。u 标注数据是AI的“饲料”。监督学习以及半监督学习需要通过标注好的数据进行训练,中国的数据量规模呈现连年递增趋势,根据IDC预测,数据规模将从23.88ZB增长至2027年76.6ZB,CAGR达26.3%。u 算法是AI的“推手”。当前主流的深度神经网络(DNN)、循环神经网络(RNN)、卷积神经网络(CNN)等技术算法成为推动AIGC应用场景加速落地的重要力量。u 算力指实现AI系统所需要的硬件计算能力,是AI的“底座”。据OpenAI测算,2012年起,全球AI训练计算量平均每3.43个月可以翻一倍,目前计算量已扩大30万倍。然而算力硬件增长速率仅年增长1.4倍,供给仍较为匮乏。资料来源:IDC,上海证券研究所图1 全球数据量发展情况及预测(ZB)资料来源:MIT paper,上海证券研究所图2 深度学习模型算力需求和算力发展对比图23.8830.023847.8960.8176.628.0534.5542.1852.4164.1379.5451.7361.7573.3487.73105.33128.1605010015020025030020222023E2024E2025E2026E2027E中国北美全球其他地区51.2 算力是经济发展高速列车上的“关键引擎”u AI时代下,算力是宏观经济跃迁的“重要基石”: u 算力对GDP具有明显正向拉动作用。规模层面,2022年算力规模前20的国家中有17个是全球排名前20的经济体,经济发展水平与算力规模呈高度正相关。u 算力助推数字化转型进程不断加快。算力应用正从互联网、电子政务等领域向电信、金融、制造等行业拓展。其中,互联网企业对模型的训练需求最为庞大,占据智能算力大约53%的市场份额。u 算力拉动产业数字化蓬勃兴起。2022年我国产业数字化规模已达到41万亿元,同比名义增长10.3%,占GDP比重达33.9%。同时已培育工业互联网平台超过240家,跨行业领域平台达28个。资料来源:中国算力发展指数白皮书,上海证券研究所图3 我国各行业智能算力应用分布情况概览资料来源:中国算力发展指数白皮书(2023),上海证券研究所图4 2016-2022年我国算力规模、GDP与数字经济呈现正相关关系互联网, 53.27%服务, 17.80%政府, 8.67%电信, 4.16%制造, 4.16%教育, 4.00%金融, 3.67%运输, 1.46% 资源, 1.33%其他, 1.48%SECTION1 算力急缺性:AI需求加速膨胀,算力迎来发展新篇章1.1 算力、数据、算法是AI时代演进的三大引擎1.2 算力是经济发展高速列车上的“关键引擎”2 产业链分析:基础设施建设提速,下游商业模式各有所长2.1 上游:摩尔定律面临严峻挑战,GPU有望铸就算力“摩尔定律出现”2.2 中游:需求繁荣是服务器市场增量的主要来源2.3 下游:需求供给双侧显著成长,数据中心发展大有可为3 公司分析:工业富联、浪潮信息、中科曙光、云赛智联、大名城、恒为科技等4 风险提示目录Content72 算力产业链布局示意图资料来源:中商产业研究网,上海证券研究所图5 算力产业链布局概览CPUGPU存储器等Intel、AMD英伟达、AMD三星、SK海力士、美光硬件服务器服务器浪潮信息、新华三、超聚变路由器光模块华为、新华三中际旭创、新易盛、天孚通信软件数据库操作系统中间件微软、AWS、谷歌谷歌、微软、苹果东方通、中创、宝兰德其他IT设备算力平台及网络IDC服务AI计算网络设备边缘计算下游应用互联网政府教育服务业电信业金融业制造业中国移动、中国联通、中国电信华为、中兴通讯、爱立信科大讯飞、百度、云从科技中国联通、中国电信、华为智算可视化算力安全恒为科技腾讯安全、360安全82.1.1 上游:AI时代下,摩尔定律面临严峻挑战u 摩尔定律表明,当价格不变时,集成电路上可容纳的晶体管数目,每隔约18个月便会增加一倍,性能也将提升一倍。因此,集成电路的算力呈现指数型增长。u 制程工艺的不断提升是维持摩尔定律成立的主要驱动因素。一方面,先进制程缩小的线宽可以使得晶体管更小更密集,从而降低成本;另一方面,元件之间的间距缩小后,晶体管的电容降低、开关频率随之提升,使得芯片工作频率得到明显上升。u 新时代下,摩尔定律变得不再适用。由于维持摩尔定律需要每年进行超过百亿美元资本的投入和研发投入,成本支出随着工艺增进大量增加,对集成电路的投入价值渐渐缩小;同时有数据表明,先进制程的主要使用场景集中在消费电子领域,其价值量仅占整个半导体市场的25%。因此,应用场景的局限性与成本的大幅增加构成了摩尔定律的失效。资料来源:源码资本,上海证券研究所图6 先进制程参与企业的数量正在逐代递减资料来源:源码资本,上海证券研究所图7 摩尔定律正在逐步失效武汉新芯华润微电子阿尔蒂斯世界先进东部高科武汉新芯华虹宏力华润微电子TowerJazz武汉新芯力晶力晶中芯国际中芯国际武汉新芯联华电子联华电子华力微电子格罗方德格罗方德力晶台积电台积电中芯国际英飞凌英飞凌联华电子德州仪器德州仪器格罗方德华力微电子索尼索尼台积电中芯国际恩智浦恩智浦恩智浦联华电子瑞萨瑞萨瑞萨格罗方德富士通富士通富士通台积电中芯国际IBMIBMIBMIBM
[上海证券]:算力行业深度报告(系列一):算力供需双向走强,AI催化Infra建设新征程,点击即可下载。报告格式为PDF,大小1.73M,页数29页,欢迎下载。
