采用自同步技术的构网型光伏逆变器:高比例新能源时代电网稳定性的核心支撑白皮书
G中国绿发CGDG禾塑电气上海中绿新能源科技有限公司Hopawind联合体采用自同步技术的构网型光伏逆变器高比例新能源时代电网稳定性的核心支撑白皮书前言目录根据《2024年世界能源统计年鉴及,2023年全球一次能源消费中,化石能源占比高达82%。其中,石油(32%)是最大来源,其次是煤炭(26%)和天然气(23%):然而,这种高度依赖化石能源的结构正面临01建设新型电力系统的挑战04多重风险。首先是资源枯竭问题:作为占比最大的能源。石油的全球探明储量仅够维持约50年的开采。其次是气候变化挑战:化石燃料燃烧释放的大量CO2导致全球变暖,进而引发海平面上升,生物多样性锐减等一系1.1高比例新能预时代的新型电力系统挑战安全性要求1.2高比例新能源时代的新型电力系统挑战二:经济性要求列严重后果。因此,当前的能源模式不仅加剧了能源安全风险,也对全球生态环境构成巨大威胁。1.3新型电力系统未来展望面对这一严峻排战,全球178个螃约方共同签署的巴协定及设定了明确目标:将全球平均温升控制在工业化前水平2°℃以内,并努力限制在1.5℃以内。要实现这一意义深远的目标,根本出路在于全球能源系统的深度转型。因此,大力发展以可再生能源为代表的新能源产业,已成为实现全球零碳愿景的核心路径和必然02技术破局10超趋势。光伏逆变器具备构建韧性电网的能力03产品应用11工程实践及价值3.1技术验证一:主动支撑3.2技大按证二:振器抑制3.3技验证三:短路比试3.4技术验证四:自组网和黑.启动应用案例19全球首例构网型光伏电站全堆度验证系统的挑战/0摘要海中绿新能源科技有限公司联合禾望电气依托主力电源型新能源场站整体解决方案,推出全球首个际应用的构网型光伏逆变器,通过虚拟同步机技术(VSG)推动解决高比例新能源接入导致的电网失稳、振荡经济性下降等点。代场站实测表明:构网光伏逆变器在电网主动支撑、振荡抑制、提升电网强度、弱网运建设新型电力系统的挑战高比例新能源时代的新型电力系统挑战一:安全性要求面对化石能源枯竭的紧追性与生态环境问题的复杂性,能源转型已成为必然选择。构建以高比例新能源为主新能源高比例接入电网可以大幅降低发电成本,但也会对电力系统的稳定性、可靠性、电能质量带来新的排体的新型电力系统,则是实现人类可持续发展的关键路径。战。本质上源于电力电子控制方式与传统发电系统的差异以及新能源存在波动性、不确定性、低惯量等问题然而,在新能源项目大规模部署的进程中,其与生俱来的技术特性(如电力电子设备导致的低惯量、弱电网PresentFuture支撑能力)正动摇电网安全稳定运行的基础,并影响发电收益。为保障电网安全,新能源电站投资者往往需要额外承担相当规模的配套设备成本,来满足电网安全运行要求。除了显著的经济负担外,更严峻的挑战在于并网稳定性本身,即便已经配置相当数量和比例的调相机,仍然存在系统失稳风险,O由此形成了新能源发展进程中难以回避的“不可能三角”矛盾:大规模部署的必然性、电网运行的安全性、项目投资的经济性,三者难以同时兼顾。其根源在于。新能源发电本质上作为电网的“被动跟随者”建设运营:经济性缺乏传统同步发电机所提供的惯量和电压支撑等关键系统服务能力。Inverter.Synchronous Gererato图1-2末豪电力系统发晨造势0405建设新型电力系统的挑战/011.1高比例新能源时代的新型电力系统挑战一:安全性要求典型暂态安全性问题:缺乏主动支撑典型暂态安全性问题:振荡同步发电机的励磁系统可在电网电压深度跌落时,瞬时提供远超额定值的无功电流,支撑电压恢复,防止系电力系统的长期稳定依赖于两大支柱:第一支柱为正阻尼特性,其可确保系统受小扰动后能自然回归平衡统电压闹渍。传统跟网型逆变器依赖于锁相环跟踪电网电压,在电压严重畸变时,锁相环可能失锁,导致逆变器点,避免振蒂发散;第二支柱为动态无功储备,是雄持电压稳定的关键。同步机励磁系统可动态调节无功输出控制豪乱,无法提供足够的动态无功支撑,易触发保护脱网,如剧扇溃。而传统新能源设备存在较大范国的负阻尼特性以及缺乏高过载能力应对动态电网无功需求,增如电压失稳风险。例如2024年中国北方某地发生“功率振荔*事件:由于线路检峰,某条同步电源线路切出,电网系统无例如在2025年4月28日西班牙大停电发生前半小时内,处于高比例新能源稳态运行的伊比利亚电网曾连续检功支撑能力减弱,汇集站发生电压深度跌落,导致AVC设备闭锁。场站电压的波动导致风机、SVG反复进入高低测到两次显著的低频振。电网运营商蛋采取提升电网运行电压措施抑制系统中的振荡,但随后部分电源的解列穿,引发电网系统相继出现2OHz和16.6Hz功率振荡。最终依靠同步电源线路重新切入才消除振滞。导致了电网系统的扰动,造成了后续级联故障和大范国停电。5021:428400484fam9:0607建设新型电力系统的挑战/011.2高比例新能源时代的新型电力系统挑战二:经济性要求高比例新能源接入带来的技术挑战,最终都化为显著的经济压力。这些压力不仅体现在电网系统的整体投资破局的关键在于从源头上提升新能源设备自身的电网支撑能力,使其能够以更低的系统改造成本和运行成本上,更直接关系到新能源项目投资者的收益与生存空间。解决这些经济性问题,是能源转型能否可持和项目配套成本,安全、稳定地接入并支撑电网。构网型光伏逆变器技术正是解决这一经济性困境的续推进的关键。核心技术路径,它通过赋予光伏逆变器主动构建和稳定电网的能力,显著减少对外部昂贵支撑设备的依赖,从而在系统安全和项目经济性之间找到平衡点。新型电力系统建设的宏观经济压力为此,上海中绿新能源科技有限公司联合禾望电气共同打造了全球首款具备构网能力的光伏逆变器,推动光伏电站从“电网适配者"向“系统稳定构建者转型。平抑新能源波动性需大规模配套抽水雷能、电化学储能及智能调度系统,推高系统协调成本。1.3新型电力系统未来展望过去,传统电力系统以同步发电机为核心,新能源开始作为“被动跟随者”按入电网,依赖同步机提供惯量弱电网区域新建变电站、需加装调相机、SVG等设备以提升短路容量和阻尼能力,投资周期长且受土地等条件约束。与电压支撑。现在,光伏、风电等跟网型电力电子设备大规模替代同步机,导致电力系统稳定性问题凸显,其并网需电网本身进行大量适,应性改造。应对新能源并网问题,需部署复杂保护装置、更频繁的调试未来,新能源设备将主动模拟同步发电机特性,自主建立和稳定电网电压与频率。不再依赖同步电源作为唯3系统以及专业运维团队,显著增加日常运维成本。一稳定基点,而是通过分布式构网设备共同支撑系统,从根本上解决稳定性与高比例新能源接入的矛盾,并大幅降低配套投资。新能源投资商的微观经济性困境AB在弱网或电网稳定性要求高的区电压失稳、宽频振荡等稳定性问题导致电站长期域,需额外配置构网型储能、调问题导致脱网,直接造不能并网或限制出力,加相机,显著延长投资回收期。成发电量损失。剧弃光、弃风。8060技术破局/02产品应用/03nn002技术破局:光伏逆变器具备构建韧性电网的能力产品应用:工程实践及价值能源体系转型不仅仅是能量来源的转变,更是电力系统的重构,传统同步机组的“旋转惯量”随火电退出而2025年4月,世界首例构网型光伏
采用自同步技术的构网型光伏逆变器:高比例新能源时代电网稳定性的核心支撑白皮书,点击即可下载。报告格式为PDF,大小24.99M,页数11页,欢迎下载。



