自动驾驶基础模型(英)

Foundation modelsFor autonomous drivingVincent VanhouckeDistinguished EngineerWaymop. 2Confidential and proprietaryOUR MISSION —Be the world’s most trusted driver.p. 2p. 3p. 4Atlantap. 4Up nextMiamiD.C.p. 4Seattle, WALas Vegas, NVNew York, NYLas Vegas, NVSan, Diego, CANew Orleans, LANashville, TNComing soonComing soonComing soonComing soonComing soonComing soon2025 Road trip citiesSan Diego, CALos Angeles, CASan Francisco Bay Area, CATruckee, CADeath Valley, NVAustin, TXMiami, FLAtlanta, GAWashington DCUpstate NYBuffalo, NYUpper Peninsula, MIMetropolitanDetroit Area, MITokyo, JapanWaymo tested citiesOperation coming soonWaymo operating citiesPhoenix, AZNew Orleans, LANashville, TNSTEP 4What should I do?p. 8STEP 1Where am I?STEP 2What’s around me?STEP 3What will happen next?p. 9p. 10Confidential and proprietaryUnusual BehaviorsExtreme WeatherUnique InteractionsStray CyclistsToddlers on the LooseFalling SkateboardersFalling TreesFloodingRoad BlockagesLast Minute Lane ChangesForeign Objects on the RoadLong tail of driving scenarios presents significant challengesA BBQ GrillFalling Off TruckMotion token sequence:t=1t=2t=3t=4MotionLM: Multi-Agent Motion Forecasting as Language ModelingAri Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou, Nigamaa Nayakanti, Khaled S. Refaat, Rami Al-Rfou, Benjamin SappICCV 2023Driving as a ConversationTrajectories as sentences in a new languageVocabulary consists of state / motion words (vectors)Like language, trajectories have local continuity and global contextModel architecture is similar to that of a LLMp. 12ExamplesMARGINAL PREDICTIONCAUSAL JOINT “DIALOGUE”p. 13Scaling LawsOnce you have a good architecture, performance scales with model size and datap. 14Inference Scaling LawsPerformance scales with the amount of compute used at runtimeFor more on motion scaling laws, don’t miss Ben Sapp’s talk tomorrow at the Workshop on Distillation of Foundation Models for Autonomous Driving!(NEW!) Now on ArXivWaymo | Confidential & ProprietaryPost-training Preference Alignment Large scale driving demonstration dataLet’s remember what the expert did and copy them! Direct Post-Training Preference Alignment for Multi-Agent Motion Generation ModelUsing Implicit Feedback from Pre-training DemonstrationsThomas (Ran) Tian, Kratarth GoelICLR 2025, SpotlightMisalignment: by optimizing an incomplete or mis-specified objective,these models lead to undesirable behaviors at best and safety hazards at worst!Waymo | Confidential & ProprietaryReconcile the disparity between the next-token prediction objective and human preferences.User ranks MotionLM responses Pre-trained MotionLM Post-training Preference Alignment Direct Post-Training Preference Alignment for Multi-Agent Motion Generation ModelUsing Implicit Feedback from Pre-training DemonstrationsThomas (Ran) Tian, Kratarth GoelICLR 2025, SpotlightWaymo | Confidential & ProprietaryPre-trained traffic simulation modelAfter post-training alignmentyield to pedestriantoo close to pedestr

立即下载
综合
2025-09-16
23页
9.24M
收藏
分享

自动驾驶基础模型(英),点击即可下载。报告格式为PDF,大小9.24M,页数23页,欢迎下载。

本报告共23页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共23页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
2023 年至今海上风机中标价格趋势
综合
2025-09-16
来源:风电行业周报:三部门联合推进风电开发鼓励装备出海,青岛3GW海上风电项目公示
查看原文
本周风电项目风力发电机组中标情况
综合
2025-09-16
来源:风电行业周报:三部门联合推进风电开发鼓励装备出海,青岛3GW海上风电项目公示
查看原文
本周风电机组开发商招标占比 图表23:本周风电整机采购开标总计 1990MW
综合
2025-09-16
来源:风电行业周报:三部门联合推进风电开发鼓励装备出海,青岛3GW海上风电项目公示
查看原文
2024 年至今月度风电新增装机容量(万 kW) 图表13:2025 年 1-7 月全国风电发电量 6291 亿千瓦时
综合
2025-09-16
来源:风电行业周报:三部门联合推进风电开发鼓励装备出海,青岛3GW海上风电项目公示
查看原文
2025 年 1-7 月全国风电新增装机 5367 万千瓦,
综合
2025-09-16
来源:风电行业周报:三部门联合推进风电开发鼓励装备出海,青岛3GW海上风电项目公示
查看原文
2025 年上半年 GDP 为 66.05 万亿元,同增 5.3% 图表9:2025 年 1-7 月全社会用电量为 58633 亿千瓦时,
综合
2025-09-16
来源:风电行业周报:三部门联合推进风电开发鼓励装备出海,青岛3GW海上风电项目公示
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起