布鲁盖尔研究所-支持减少对生成人工智能输入和输出的版权保护的经济论据(英)

WORKING PAPER | ISSUE 09/2024 | 4 APRIL 2024Recommended citation:Martens, B. (2024) ‘Economic arguments in favour of reducing copyright protection for generative AI inputs and outputs’, Working Paper 09/2024, BruegelBERTIN MARTENSGenerative artificial intelligence (GenAI) models have stirred considerable controversy about copyright protection for AI training inputs and model outputs. The European Union’s AI Act will require model developers to be transparent about their use of training inputs such as text, images and music. The EU Copyright Directive allows free text and data mining of these media inputs unless copyright holders have opted out and want license payments.The right to opt-out amounts to economically inefficient overprotection of copyright. Free use of media content for GenAI training does not affect media sales to consumers. Opt-outs only strengthen the bargaining position of copyright holders, who decide depending on their private interests. That generates windfall profits without any increase in consumer surplus or social welfare.The licensing of training inputs reduces the quantity of data and the quality of GenAI models, creates transaction costs and reduces competition between GenAI firms. This slows down GenAI-induced innovation in media products and production processes, and productivity gains in all service sectors that apply GenAI. Ultimately, it slows down economic growth compared to what it could be with competitive and high-quality GenAI.Bargaining over license pricing is arbitrary as there is no objective revenue benchmark to start from. Defenders of the moral right to remuneration argue that any arbitrary remuneration is better than no remuneration. But this private moral right comes at the expense of social welfare. The ongoing bargaining and court cases between media producers and GenAI developers risk entrenching this market failure in jurisprudence. Early regulatory intervention and elimination of opt-outs for GenAI training, or weakening them in AI Act implementation guidelines, would solve this.There is no need for copyright on GenAI outputs either. GenAI reduces the marginal cost of machine-production of media outputs to close to zero, on par with the marginal cost of reproduction. That eliminates incentives for piracy. Moreover, composite human-machine outputs benefit from a de-facto extension of copyright on the human component. Bertin Martens (bertin.martens@bruegel.org) is a Senior Fellow at Bruegel and a non-resident research fellow at the Tilburg Law and Economics Centre, Tilburg UniversityECONOMIC ARGUMENTS IN FAVOUR OF REDUCING COPYRIGHT PROTECTION FOR GENERATIVE AI INPUTS AND OUTPUTS1 Introduction Copyright is a policy tool to stimulate innovation in society. Granting exclusive private intellectual property rights, in the form of copyright, to human authors is meant to be an incentive for investment in the production of creative content such as books, music and movies. It is a tool to prevent comme

立即下载
信息科技
2024-04-18
23页
0.43M
收藏
分享

布鲁盖尔研究所-支持减少对生成人工智能输入和输出的版权保护的经济论据(英),点击即可下载。报告格式为PDF,大小0.43M,页数23页,欢迎下载。

本报告共23页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共23页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
国内外电信公司资产负债率对比
信息科技
2024-04-18
来源:通信行业三大运营商23年业绩点评:创新驱动深化转型,迈向智能化时代
查看原文
中国电信资本开支明细(单位:亿元) 图 15:中国联通资本开支明细(单位:亿元)
信息科技
2024-04-18
来源:通信行业三大运营商23年业绩点评:创新驱动深化转型,迈向智能化时代
查看原文
三大运营商资本开支(单位:亿元) 图 13:中国移动资本开支明细(单位:亿元)
信息科技
2024-04-18
来源:通信行业三大运营商23年业绩点评:创新驱动深化转型,迈向智能化时代
查看原文
运营商分红率
信息科技
2024-04-18
来源:通信行业三大运营商23年业绩点评:创新驱动深化转型,迈向智能化时代
查看原文
经营性活动现金净流量(单位:亿元) 图 10:三大运营商流动比率
信息科技
2024-04-18
来源:通信行业三大运营商23年业绩点评:创新驱动深化转型,迈向智能化时代
查看原文
三大运营商毛利率 图 8:三大运营商净利率
信息科技
2024-04-18
来源:通信行业三大运营商23年业绩点评:创新驱动深化转型,迈向智能化时代
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起