SSRN-大语言模型与中国股票市场收益率可预测性研究

Large Language Models and Return Prediction in China First Version: November 7th, 2023 This Version: November 7th, 2024 Lin Tan, Huihang Wu and Xiaoyan Zhang Abstract We examine whether large language models (LLMs) can extract contextualized representation of Chinese public news articles to predict stock returns. Based on representativeness and influences, we consider seven LLMs: BERT, RoBERTa, FinBERT, Baichuan, ChatGLM, InternLM, and their ensemble model. We show that news tones and return forecasts extracted by LLMs from Chinese news significantly predict future returns. The value-weighted long-minus-short portfolios yield annualized returns between 35% and 67%, depending on the model. Building on the return predictive power of LLM signals, we further investigate its implications for information efficiency. The LLM signals contain firm fundamental information, and it takes two days for LLM signals to be incorporated into stock prices. The predictive power of the LLM signals is stronger for firms with more information frictions, more retail holdings and for more complex news. Interestingly, many investors trade in opposite directions of LLM signals upon news releases, and can benefit from the LLM signals. These findings suggest LLMs can be helpful in processing public news, and thus contribute to overall market efficiency. Keywords: return prediction, news articles, large language models, information efficiency, Chinese stock market. JEL Codes: C52, C5, G1, G14.  Lin Tan (tanl.19@pbcsf.tsinghua.edu.cn), Huihang Wu (wuhh@pbcsf.tsinghua.edu.cn), and Xiaoyan Zhang (zhangxiaoyan@pbcsf.tsinghua.edu.cn) are all at the PBC School of Finance at Tsinghua University. We thank Kaiji Chen, Lei Chen, Lin William Cong, Byoung-Hyoun Hwang, Fuwei Jiang, Raymond Kan, Xing Liu, Xiumin Martin, Jun Tu, Xiaolu Wang, Dacheng Xiu, Nianhang Xu, Bernard Yeung, Xintong Zhan, Xingjian Zheng, Guofu Zhou, conference participants at 2024 ABFER-JFDS Conference on AI and Fintech, 2024 China Fintech Research Conference (CFTRC), 2024 Summer Institute in Finance (SIF) Annual Conference, and seminar participants at Sun Yat-Sen University, Tsinghua University and 2024 Summer Institute in Digital Finance (SIDF) for their helpful comments. We appreciate Zicheng Wang’s research assistance. We gratefully acknowledge financial support from the National Natural Science Foundation of China [Grant No. 72350710220]. All remaining errors are our own. Corresponding author: Xiaoyan Zhang, PBC School of Finance, 43 Chengfu Road, Beijing, China, 100083, zhangxiaoyan@pbcsf.tsinghua.edu.cn. Large Language Models and Return Prediction in China Abstract We examine whether large language models (LLMs) can extract contextualized representation of Chinese public news articles to predict stock returns. Based on representativeness and influences, we consider seven LLMs: BERT, RoBERTa, FinBERT, Baichuan, ChatGLM, InternLM, and their ensemble model. We show that news tones and

立即下载
综合
2025-04-14
74页
4.61M
收藏
分享

SSRN-大语言模型与中国股票市场收益率可预测性研究,点击即可下载。报告格式为PDF,大小4.61M,页数74页,欢迎下载。

本报告共74页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共74页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
图表 5. 南昌都市圈发展主要相关政策文件
综合
2025-04-14
来源:长江中游城市群协同共进 构建中部崛起新引擎 ——长江中游城市群区域研究
查看原文
图表 8 2022-2024 年武汉都市圈和湖北省 GDP 规模(单位:亿元)
综合
2025-04-14
来源:长江中游城市群协同共进 构建中部崛起新引擎 ——长江中游城市群区域研究
查看原文
图表 7 江西省 2023 年行业营业收入占比较 2014 年变化(单位:百分点)
综合
2025-04-14
来源:长江中游城市群协同共进 构建中部崛起新引擎 ——长江中游城市群区域研究
查看原文
图表 6 湖南省 2022 年行业营业收入占比较 2013 年变化(单位:百分点)
综合
2025-04-14
来源:长江中游城市群协同共进 构建中部崛起新引擎 ——长江中游城市群区域研究
查看原文
图表 5 湖北省 2023 年行业营业收入占比较 2014 年变化(单位:百分点)
综合
2025-04-14
来源:长江中游城市群协同共进 构建中部崛起新引擎 ——长江中游城市群区域研究
查看原文
图表 4 2023 年全国及长江中游城市群区域三次产业增加值占比
综合
2025-04-14
来源:长江中游城市群协同共进 构建中部崛起新引擎 ——长江中游城市群区域研究
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起