世界银行-通过人工智能驱动的文本挖掘识别扩展的绿色职位清单(英)

Policy Research Working Paper10908Identification of an Expanded Inventory of Green Job Titles through AI-Driven Text MiningMichał PalińskiGüneş AşıkTomasz GajderowiczMaciej JakubowskiEfşan Nas ÖzenDhushyanth RajuSocial Protection and Jobs Global PracticeSeptember 2024 Public Disclosure AuthorizedPublic Disclosure AuthorizedPublic Disclosure AuthorizedPublic Disclosure AuthorizedProduced by the Research Support TeamAbstractThe Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.Policy Research Working Paper 10908This study expands the inventory of green job titles by incorporating a global perspective and using contemporary sources. It leverages natural language processing, specifically a retrieval-augmented generation model, to identify green job titles. The process began with a search of academic liter-ature published after 2008 using the official APIs of Scopus and Web of Science. The search yielded 1,067 articles, from which 695 unique potential green job titles were identi-fied. The retrieval-augmented generation model used the advanced text analysis capabilities of Generative Pre-trained Transformer 4, providing a reproducible method to catego-rize jobs within various green economy sectors. The research clustered these job titles into 25 distinct sectors. This catego-rization aligns closely with established frameworks, such as the U.S. Department of Labor’s Occupational Information Network, and suggests potential new categories like green human resources. The findings demonstrate the efficacy of advanced natural language processing models in identifying emerging green job roles, contributing significantly to the ongoing discourse on the green economy transition.This paper is a product of the Social Protection and Jobs Global Practice. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted at snasozen@worldbank.org and draju2@worldbank.org. Identification of an Expanded Inventory of Green Job Titles through AI-Driven Text Mining Michał Paliński Güneş Aşık Tomasz Gajderowicz Maciej Jakubowski Efşan Nas Özen Dhushyanth Raju Keywords: AI, text mining, occupational classification, green jobs, green eco

立即下载
信息科技
2024-09-30
33页
1.02M
收藏
分享

世界银行-通过人工智能驱动的文本挖掘识别扩展的绿色职位清单(英),点击即可下载。报告格式为PDF,大小1.02M,页数33页,欢迎下载。

本报告共33页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共33页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
图 8 全球量子计算企业投融资事件与金额变化趋势
信息科技
2024-09-30
来源:量子计算发展态势研究报告(2024年)-中国信通院-中移(苏州)软件技术有限公司-波色量子
查看原文
图 3 量子计算不同技术路线全球发文情况
信息科技
2024-09-30
来源:量子计算发展态势研究报告(2024年)-中国信通院-中移(苏州)软件技术有限公司-波色量子
查看原文
通信设备行业整体财务数据汇总
信息科技
2024-09-29
来源:通信行业专题研究:AI新动能拉动行业23Q4反转后逐个季度加速增长
查看原文
运营商行业毛利率 图 62:运营商行业研发费用率
信息科技
2024-09-29
来源:通信行业专题研究:AI新动能拉动行业23Q4反转后逐个季度加速增长
查看原文
运营商行业营业收入 图 60:运营商行业归母净利润
信息科技
2024-09-29
来源:通信行业专题研究:AI新动能拉动行业23Q4反转后逐个季度加速增长
查看原文
运营商行业财务数据汇总
信息科技
2024-09-29
来源:通信行业专题研究:AI新动能拉动行业23Q4反转后逐个季度加速增长
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起