PitchBook-新兴空间简报:LLM代理(英)

1Originally published September 18, 2024pbinstitutionalresearch@pitchbook.comAli Javaheri Analyst, Emerging Technologyali.javaheri@pitchbook.comEMERGING SPACE BRIEFLLM Agents1: Monte Carlo tree search is a decision-making algorithm in which a computer simulates many possible outcomes, learns from them, and then makes the best choice based on those results.Trending companiesOverviewLarge language model (LLM) agents represent an emerging technology in the field of artificial intelligence. These systems use advanced language models to process complex instructions, develop plans, and execute tasks across various domains. Key characteristics of LLM agents include task decomposition capabilities, integration with external tools and APIs, adaptive learning potential, and context retention across interactions.The development of LLM agents has potential implications for productivity enhancement and operational streamlining across industries.BackgroundThe evolution of LLM agents is rooted in advancements in natural language processing and machine learning. While agents are an old concept in reinforcement learning research, LLM agents have appeared more recently, developed in tandem with transformer models. The development of LLM agents has the potential to enhance productivity and streamline operations across industries.A few key milestones in the modern concept include:• Early 2010s: Deep learning techniques and neural networks advance, setting the stage for more sophisticated language models.• 2017: The Transformer architecture is introduced, significantly improving the efficiency of training LLMs. DeepMind’s agentic model, AlphaZero, learned to master games including Go, chess, and shogi (Japanese chess), achieving superhuman performance in all three games and showing the ability of AI to execute tasks based on reinforcement learning using Monte Carlo tree search.1• 2018-2020: OpenAI releases the GPT (Generative Pretrained Transformer) series, demonstrating enhanced language understanding and generation capabilities.• 2020-2022: Task-specific fine-tuning and prompt engineering techniques emerge, enabling more targeted applications of language models.LLM agents VC deal activity $92.7$490.0$323.1$1,317.9$1,036.219273810411120202021202220232024*Deal value ($M)Deal countSource: PitchBook • Geography: Global*As of September 17, 2024Note: Excluding OpenAIFor access to more of this data and PitchBook’s Emerging Spaces tool, access a free trial link here.2Emerging Space Brief: LLM Agents2: “The Brief History of AI Agents (2023-2024),” YouTube, uploaded by swyx, August 14, 2024. 3: Ibid. 4: “LLM Agents,” Prompt Engineering Guide, n.d., accessed September 17, 2024. 5: “Multi-Agent Conversation Framework,” GitHub, 2024, accessed September 17, 2024.• April 2023: Open-source LLM agent project Auto-GPT becomes the fastest-growing GitHub repository in history, showcasing the potential for autonomous AI agents to complete multistep tasks.2• July 2023: OpenAI releas

立即下载
综合
2024-09-30
8页
0.58M
收藏
分享

PitchBook-新兴空间简报:LLM代理(英),点击即可下载。报告格式为PDF,大小0.58M,页数8页,欢迎下载。

本报告共8页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
本报告共8页,只提供前10页预览,清晰完整版报告请下载后查看,喜欢就下载吧!
立即下载
水滴研报所有报告均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
相关图表
长江机械细分板块估值水平 图 6:长江机械细分板块估值分位数
综合
2024-09-29
来源:机械行业周报:政治局会议带动市场信心,机械指数取得较好表现
查看原文
长江机械细分板块本周表现 图 4:长江机械细分板块今年表现
综合
2024-09-29
来源:机械行业周报:政治局会议带动市场信心,机械指数取得较好表现
查看原文
申万行业板块本周表现 图 2:申万行业板块今年表现
综合
2024-09-29
来源:机械行业周报:政治局会议带动市场信心,机械指数取得较好表现
查看原文
机械板块周涨幅靠前日期的复盘(单位%)
综合
2024-09-29
来源:机械行业周报:政治局会议带动市场信心,机械指数取得较好表现
查看原文
年初至今医药成交额及占 A 股比例(万亿)
综合
2024-09-29
来源:医药行业周报:医药大涨后买什么?
查看原文
申万医药各细分板块 PE 估值情况(截至 2024 年 9 月 27 日,整体 TTM 法)
综合
2024-09-29
来源:医药行业周报:医药大涨后买什么?
查看原文
回顶部
报告群
公众号
小程序
在线客服
收起