工商业储能安全白皮书(2023)
工商业储能安全白皮书随着新能源技术的发展和应用的扩大,电池储能技术被广泛应用于电力系统、交通、农业等领域,成为清洁能源的重要组成部分。尤其在工商业场景下,储能系统的应用已经成为提高能源自给率、减少企业电费支出、保障电力供应稳定性等方面的重要手段。然而,电池储能技术的发展和应用,也面临着安全问题的挑战。储能系统一旦发生安全事故,会对周边环境和人身造成严重威胁。工商业储能直面工厂、医院、商场、园区等应用场景,较传统电站储能而言,场景更复杂、消防难度更大、人员资产更密集,其对于安全的需求尤为凸显。针对安全问题,目前业界的工商业储能安全方案正在逐步强化,但仍然难以在事故前期准确识别风险、保护设备运行,也欠缺在极端情况下对周围人身及资产安全的兜底保护能力,不能完全保障工商业场景下的设备、资产和人身安全,存在缺陷和局限性。为了让业界可以更全面地了解工商业储能系统中的安全设计,华为和 TÜV 莱茵联合发布“工商业储能安全白皮书”。本白皮书旨在探讨工商业储能安全,从设备、资产和人身三个维度出发,介绍储能在工商业场景下的安全挑战和发展现状,以及面向未来的创新技术理念和方向,供行业参考。引言目录1.11.21.33.13.23.33.42.12.22.32.42.5人员资产密集,事故损失大场景复杂、选址不规范,消防实施难度高业主安全担忧高,影响部署积极性工商业储能安全设计理念:设备、资产、人身,主动安全设备安全设计,守护系统运行资产安全设计,减少故障损失人身安全设计,保护人员安全确保电池本质安全构建监控预警一体的早期安全管理具备全面的风险源预防手段快速隔离内部热失控扩散提升极端情况人身安全兜底能力01030204工商业储能安全设计必要性华为工商业储能安全方案工商业储能安全设计挑战总结和展望2工商业储能安全白皮书图1. 储能事故会造成重大人员伤亡和财产损失011.1人员资产密集,事故损失大工商业储能直面工厂、医院、商场、园区等场景,一般被部署在人员和资产集中区,一旦发生事故,造成的经济损失和人员伤亡非常严重。根据北京市应急管理局的调查报告,某起用户侧储能起火爆炸事件曾导致一名值班电工遇难、两名消防员牺牲、一名消防员受伤,并造成直接财产损失 1660.81 万人民币。储能技术的应用通常可分为发电侧、用户侧以及电网侧,其在用户侧主要用于配合光伏等新能源系统实现自发自用、峰谷价差套利、容需量电费管理和提升供电可靠性等。工商业场景作为用户侧储能的重要使用场景,相比于传统储能电站,对设备的安全性能提出了更高的要求。对于加强工商业储能本质安全设计的必要性主要来自于以下三个方面:工商业储能安全设计必要性31.3业主安全担忧高,影响部署积极性1.2场景复杂、选址不规范,消防实施难度高工商业场景包括商超、工厂、园区等,场景地形复杂。虽然消防人员到达事故地点的时间通常较快,但受场景和地形所限,存在消防员难以接近起火设备,导致无法进行有效灭火的难题。并且,工商业储能作为一个较新的领域,有别于传统储能电站,其相关设计规范和标准仍处于早期阶段。这导致其安装场景的规划设计很难被约束,进一步加剧了前述消防实施的难度。例如在我国,工商业储能的部署并未强制要求引入设计院,业主由于欠缺引导,在选址时往往更注重空余土地利用和经济性,而欠缺对后期事故的考虑和设计。因此,储能系统本身的安全能力变得尤为重要。工商业业主对于储能安全的顾虑和担忧正成为储能在该场景下持续增长的掣肘。根据 TÜV 莱茵的一项调查,当讨论到企业对储能系统最关注的指标时,“安全”是大多数业主的答案。图3. 业主最关注的储能系统关键指标,来源:TÜV莱茵图2. 工商业储能常见部署场景,地形复杂安全质量价格寿命性能其他0.30%36.80%24.10%20.80%9.30%8.70%商超物流工厂工商业储能安全设计必要性4工商业储能安全白皮书2.1确保电池本质安全储能系统的原始安全性与其电芯性能直接相关,电池本体因素仍然是储能系统安全的核心。锂电池在正常的充放电反应中,存在着很多潜在的放热副反应,具有不稳定性。储能系统集成商需要进一步提升电池材料、电池选型和生产工艺等方面的要求,从源头加强储能安全。U图4. 储能系统的失效链路02工商业储能系统的失效路径包括风险源引入、热失控发生、热失控蔓延和极端情况储能起火燃爆,每个环节对应着不同的安全技术挑战。如何实现下述的安全技术挑战,满足对失效过程全链路的保护,将成为守卫工商业储能系统设备安全、资产安全和人身安全的关键。工商业储能安全设计挑战…风险源引入大面积内短路急剧升温/开阀热失控热失控扩散剧烈爆炸52.2构建监控预警一体的早期安全管理2.3具备全面的风险源预防手段针对储能系统的失效链路,其安全管理可以大致分为早期预警和故障及热失控告警两个层次。当失效链路进行至故障及热失控告警环节时,储能内部的反应已然形成,电芯或模组的热失控已不可逆。而在早期预警阶段,可以通过结合电芯数据的实时监控、电芯风险的智能预测和故障的分级预警等技术提前预警热失控,给运维挽救措施的介入争取时间,做到从根本上阻断热失控风险。电池热失控的诱发因素多而复杂,包含非电池热风险、外部和环境风险、电气风险、内部缺陷故障和控制失效风险等多种风险源。它们在储能设备运行时会导致过热、短路等问题的发生,从而引发热失控和火灾。不同的风险源对应的成因不同,对应的设备预防手段也不同,如电气类风险需要通过多级的电气隔离和系统关断来进行预防,而控制失效类风险则需要通过采样异常检测算法等来进行防范。因此,需要对储能系统进行全面的多级安全设计,以覆盖不同的风险源,精确识别储能系统风险因素。储能电池热失控风险源非电池热风险外部和环境风险电气风险内部缺陷故障控制失效风险·DC/DC短路起火·连接点发热/拉弧·外部高温/明火·运输振动/冲击/跌落·浸水/凝露/腐蚀/粉尘·人误操作·主回路短路/负载短路·模组端子绝缘失效·过压/过流·制造毛刺·极柱与壳体搭接·析锂内短·采样故障/通信故障·BMS软/硬件故障图5. 储能电池风险复杂工商业储能安全设计挑战6工商业储能安全白皮书2.4快速隔离内部热失控扩散2.5提升极端情况人身安全兜底能力储能系统中热失控的扩散首先在某个单体电芯中发生,继而蔓延至整个模组;该模组发生热失控后,再扩散到相邻的电池模组。热失控一旦开始就很难停止,其造成的损失虽然难以挽回,但可以通过快速隔离其扩散做到减少故障损失。因此,需要在储能系统中增加多级的隔离设计,当某些部件的电流、电压、温度等参数出现异常时,可快速的关断或隔离故障部件。人身安全至关重要。在储能燃爆的极端情况下,即使储能场地得到安全保障,员工在维护和例行系统检查时也会因为在附近工作而受到伤害。储能燃爆会造成储能门板飞出、储能壳体解体、顶置空调飞出等事故,直接对系统周围运维和消防人员产生安全威胁;燃爆导致的冲击波则会引发周围设施窗户震碎等次生危害,进一步给周边设施内的人员带来人身安全风险。通过对行业公开信息进行搜集整理,汇总了过去2018-2023 年间,全球储能项目主要火灾或爆炸事故。过去五年共发生了 55 起储能安全事故,其中 6起事故发生爆炸,北京丰台和美国亚利桑那州的 2起爆炸事故有人员伤亡。图6. 燃爆导致壳体解体、门板
工商业储能安全白皮书(2023),点击即可下载。报告格式为PDF,大小8.49M,页数18页,欢迎下载。